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Abstract 

Turbulence in the vicinity of the last closed surface transports plasma momentum 

away from the core region towards the wall, and hence provides a momentum “source” 

that can induce net core plasma rotation as well as sheared flows in the edge. Here, 

numerical simulations of this process for the binormal (approximately poloidal) 

component of momentum are described which use a minimal two-dimensional model, in 

the plane perpendicular to the magnetic field, incorporating directionality (drift-waves), 

radial transport (Reynolds stress and blobs), and dissipation (sheath loss terms). A 

zonally-averaged momentum conservation law is used to advance the zonal flows. The 

net momentum transferred to the core is shown to be influenced by a number of physical 

effects: dissipation, the competition between momentum transport by Reynolds stress and 

passive convection by particles, intermittency (the role of blobs carrying momentum), 

and velocity shear regulation of turbulence. It is shown that the edge momentum source 

adjusts to match the rate of momentum transfer into the core, keeping the edge velocity 

shear nearly constant. The simulation results are also compared with the predictions of 

quasilinear theory. 

 

 
PACS:  52.35.Ra, 52.35.Kt,  52.55.Fa, 52.65.Kj 
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I. Introduction 

A large body of experimental and theoretical work has been focused recently on 

issues related to turbulent edge transport in tokamaks and other magnetic confinement 

devices.  It is widely appreciated that edge and scrape-off-layer (SOL) physics is 

important both in its role as “boundary condition” for the core and because of the 

expected consequences of wall interactions and damage due to the transport of plasma 

particles and energy across the SOL.  Strong turbulence, intermittency, and convective 

transport in the SOL by blob-filaments have emerged as central concepts in these 

investigations.  Review articles on experimental measurements,1 turbulence simulations2 

and blob physics3 summarize recent contributions. 

Momentum transport, though not as accessible experimentally as particle and 

energy transport, has been appreciated theoretically for many years. Zonal flows, 

reviewed in Ref. 4, arise as a consequence of momentum transport driven by the 

Reynolds stress due to turbulence.  While many of the basic mechanisms are well 

understood, much of this understanding has been obtained in the context of models which 

are not strictly pertinent to the region near the last closed surface (LCS).  This radial 

zone, encompassing typically several cm on either side of the LCS, is the focus of the 

present paper, in which we consider the transport of the binormal (approximately 

poloidal) component of momentum across the magnetic field.  

In the vicinity of the LCS, the presence of strong turbulence (i.e. here meaning 

order unity fluctuations in the density), the rapid radial variation of the mean (zonally-

averaged) density and potential, and the presence of sheath boundary conditions on field 

lines in the SOL require new investigations and invite new kinds of questions.  How does 

drift wave physics, which provides a preferred phase velocity direction, determine the 

direction of induced zonally-averaged flows? How does drift-wave instability in 
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combination with curvature driven instability lead to the formation of blob-filaments and 

how does this affect momentum transport? How applicable is quasilinear theory for 

momentum transport in the vicinity of the LCS? What is the strength of the edge 

momentum source for the core and what is the role of sheath and viscous dissipation?  

How does momentum transport correlate with sheared flow regulation of turbulence?  

Finally, how can we understand momentum flow near and across the LCS respecting 

momentum conservation and the important radial density weighting of the Reynolds 

stress drive terms?  

Some of these questions have been partially addressed in other works,5-8 where 

the models have treated various aspects of edge/SOL turbulence including sheared flow 

regulation, sheaths, drift wave and curvature driven turbulence, blob formation, and the 

properties of the Reynolds stress. Generally the models employed in these simulations 

have not been momentum conserving or have made other simplifications, and 

consequently have been unable to explore some of the issues mentioned in the preceding 

paragraph.  The present paper features a momentum conserving edge turbulence model 

(in the appropriate dissipationless limit) that treats order unity fluctuations, drift wave 

and curvature-interchange physics, and SOL sheaths. Among other fundamental 

questions, this model will allow an exploration of the role of blob dynamics on transport 

of the perpendicular component of momentum. 

There is a vast literature discussing the production of zonal flows by drift wave 

turbulence.4  While much of this work was motivated by the regulation effect that zonal 

flows have on the turbulence itself,9 many of the concepts are also relevant to the 

generation of net poloidal and toroidal rotation in tokamaks.  Recent work has focused on 

momentum transport by turbulence, emphasizing the role of spectral asymmetry which 

can result from the interaction of sheared flows with the background magnetic shear.10 



 4 

Except for some brief remarks in the concluding section of our paper, the subjects 

of spontaneous toroidal rotation11 and parallel momentum transport are outside the 

scope of this paper, and would likely require a full three-dimensional treatment.  These 

topics are, however, closely related to concepts considered here, and have partly 

motivated the present study.  In particular, theoretical work addressing turbulence-

induced rotation and the phase velocity of underlying unstable modes12 have motivated 

some questions which are addressed here.  Coppi has proposed that the angular 

momentum carried by blobs is associated with the toroidal phase velocity of the 

underlying unstable edge plasma modes.  Momentum transferred from the modes to the 

blobs and lost from the core plasma, is posited to provide a recoil force that can rotate the 

core, in accord with experimental observations of spontaneous rotation in L and H mode 

plasmas.13  

The plan of our paper is as follows.  In Sec II we present the basic equations of 

the simulation model.  In Sec. III the numerical results are given.  Finally, a discussion 

and conclusions are given in Sec. IV.  Appendix A discusses the derivation of our model 

equations and the numerical algorithms employed to solve them.  Some verification tests 

of the simulation code against a radial eigenvalue code, are discussed in Appendix B. 

II. Model equations 

A simple two-field model that contains the physics ingredients we require for 

edge momentum transport studies is obtained by combining the Wakatani-Hasegawa14 

model equations on closed flux surfaces and the blob15 model equations on the open field 

lines.  These equations describe dynamics in the 2D plane normal to the magnetic field B, 

with model closure terms for the parallel physics.  In particular, sheath losses of charge 

and density are controlled by a parameter αsh and the electron adiabaticity (i.e. drift wave 
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physics) is controlled by αdw.   The evolution equations for electron density and plasma 

vorticity (yielding the fluctuating potential) in our model are 
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Here N = ln n, nn~n += , Φ+Φ=Φ ~ , vvv += ~ , etc., and {…}denotes the 

fluctuating (i.e. ~) part.  Further discussion of the derivation of these equations is given in 

Appendix A. The angular brackets ∫ ∫= dy/(...)dy...  denote a zonal (i.e. y) average. 

Throughout, ∇ = ∇⊥ acts in the perpendicular plane of the model. Convection in the 

constant background magnetic field B = Bez is described by Φ∇×= zev . The density 

source term S, active inside the LCS, takes the form S = ν(x)[n0(x)−n] where n0 is a 

specified target profile. We employ pedestal type functions for ν(x) and n0(x) which 

decay exponentially into the SOL. This allows the turbulent density profile to evolve 

freely in the SOL region where S = 0, while heavily damping density fluctuations near 

the simulation boundary on the core side where we allow S (i.e. ν) to be flat and large. 

In Eqs. (1) and (2) and throughout the remainder of the paper we employ 

dimensionless (Bohm) units  

 nn/n,T/e,x/x,S/S,tt 00s →Φ→Φ→ρ→Ω→Ω  (3) 

where Ω = ZeB/mic and ρs = cs/Ω with cs2 = T/mi and n00 is a reference density at the 

top of the pedestal. 

The term involving  
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models the electron response (i.e. parallel current) on closed surfaces [αdw large enforces 

adiabatic electrons], where L|| is a typical parallel scale length for the turbulence, usually 

taken as the connection length L|| ~ qR where q is the safety factor and R the major radius 

of the torus.  Here we take αdw = αdw(x) to decay rapidly in the SOL, reflecting the 

strong increase in collisionality.  In the SOL the electron response is modeled by  

 
||

s
sh L

2ρ
=α  (5) 

where αsh(x) vanishes in the core, and L|| is the connection length to the end-sheaths. The 

corresponding terms in the continuity and vorticity equations represent the usual sheath 

end-loss terms for particles and charge. The curvature drive is modeled by  

 
R

2 sρ
=β  (6) 

and is independent of x. The model thus incorporates elements of the classical drift-wave 

model of Wakatani-Hasegawa14 (αdw) and the blob15 model equations (αsh and β). 

The zonally-averaged potential Φ≡Φ  evolves according to 
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where Φ∂= xyv .  In the absence of sheath dissipation (∝ αsh), zonally-averaged 

momentum transport is manifestly conservative.  Equation (7) implies that the source S in 

the density equation replaces lost particles, but not momentum, i.e. the source creates 

plasma at zero velocity rather than at the local ambient velocity.  Otherwise there would 

be an additional term <Svy> in Eq. (7).   

Note that we invoke the familiar Boussinesque approximation on the vorticity 

equation for the fluctuating potential, but not for the zonally-averaged potential, in order 

to preserve momentum conservation for the zonally averaged flows. Also, the sheath 

term in Eq. (7) is not standard, although a similar term has previously been invoked.8  It 
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is obtained from integration of the (pre- Boussinesque) vorticity equation neglecting 

terms small in vy/Φ ~ O(Φ−1∂Φ/∂x) ~ O(ρs/L).  It describes the J×B force from radial 

current in the current loop implied by 0=⋅∇ J  since there is parallel current flow into 

the sheaths, i.e. ||||
x

0x JxdJ ∇′−= ∫ .   

The linearized equations of the model, the local dispersion relation and the 

nonlocal radial eigenvalue problem for the instabilities are given in Appendix B.  As 

expected, the model supports an unstable drift wave with frequency ω ~ 

)x/n)(n/k( ye ∂∂−≡ω∗ , a curvature-interchange mode with )k/k( 22
y

2
mhd

2 β=γ−≈ω  

)x/n)(n/1( ∂∂ , and various other related instabilities including the sheath-interchange 

mode with ω ~ )/k(i sh
2
y αβ− )x/n)(n/1( ∂∂ . Additionally, the model supports the 

Kelvin-Helmholtz instability when the equilibrium has sheared flows. 

Simulations of Eqs. (1), (2) and (7) were performed using a modified version of 

the Scrape-Off-Layer-Turbulence code (SOLT).  A description of the numerical methods 

may be found in Appendix A herein, and in Appendix A of Ref. 16.  The code used in the 

present studies is a variant of the “two-region” code described in Ref. 16, modified here 

to include the drift wave physics and model a single region (i.e. a single 2D plane). 

Simulations in this paper were run on a 256 × 256 grid resulting in a mesh size of 0.78 (in 

units of ρs) for a box size of Lx = Ly = 64π = 201.  Periodic boundary conditions are 

imposed in the y-direction.  In the x-direction, vy = 0  is imposed at the left boundary (x = 

0) and Φ = 0 is imposed at the right boundary (x = Lx). 

III. Numerical results  

The base case profiles are illustrated in Fig. 1 as a function of the radial 

coordinate x. The profiles of n(x) (initial condition and source function), αdw(x) and 

αdw(x)/n(x) (a combination that enters linear stability) decay into the SOL.  The SOL is 

defined by the variation of the sheath parameter αsh(x) which rises rapidly for large x, 
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corresponding to an increasingly short parallel connection length of the field lines.  The 

sheath dissipation from αsh at large x dissipates the turbulence before it reaches the right-

hand boundary.  Thus the turbulence is well confined away from the simulation 

boundaries.  The drift-wave-interchange instability is rapidly growing near the foot of the 

density pedestal, i.e. in the strong ∇ ln n region (95 < x < 125).  Unless otherwise stated, 

the simulations employ the base case parameters αdw0 = 0.01, αsh0 = 0.001, β = 0.002 

where 0 indicates the values of the profiles at the left boundary (right boundary for αsh).  

In addition to these fundamental parameters, we use base case intrinsic diffusion and 

viscosity coefficients D = µ = µ  = ν0 = 0.01.  These base values are small enough that 

they do not significantly affect the instability growth rates, or turbulence and blob 

characteristics. Simulations were initialized with zero initial flow velocity, <vy> = 0, 

unless otherwise stated. 

Parameter values for αdw0, αsh0, β and the background profiles chosen for our 

simulations are illustrative of low power L-mode discharges in the National Spherical 

Torus Experiment17 (NSTX); however, modeling comparisons of blob formation and 

propagation characteristics will be deferred to a future study.  Instead here we employ the 

simulation model to address some theoretical conceptual points associated with 

momentum transport that are not directly verifiable from existing experimental data.   

Figure 2 a) shows the time history of the base case simulation, seeded with an m = 

4 instability, where ky = 2πm/Ly.  After a few instability growth times (γmax ~ 0.01) 

followed by an initial transient burst of plasma (blob ejection), quasi-steady turbulence 

results.  As time progresses “spontaneous” rotation (i.e. flow) of the core plasma 

increases, as evidenced by the continuing buildup of net plasma momentum (top panel), 

and by the time evolution of the <nvy>(x) profile in Fig. 2 b).  Here, the plasma 

momentum is defined by 
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Because our model conserves momentum, Eq. (7) shows that py is also the total 

momentum lost to the sheaths, i.e. combining Eqs. (7) and (8) 
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x

0

L
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where we drop the turbulent momentum flux term <n vx ny> and the viscous momentum 

flux term x/vy ∂∂µ at the boundaries noting that both are negligible for base case 

parameters.  

The particle flux leaving the main plasma (middle panel), measured here at x = 

110, is intermittent due to blob losses but always positive.  The instantaneous momentum 

flux across the LCS (bottom panel) has both signs, but is dominantly negative (for 

reasons to be discussed), giving rise to the positive spin-up shown in the top panel. The 

momentum buildup does not saturate for longer runs, but continues (until the momentum 

diffuses to the simulation wall at x = 0) as verified by course grid (128 × 128) 

simulations which were carried out to t = 150,000.  Thus the turbulent transport of 

momentum into the SOL provides an edge momentum source which can rotate the core 

plasma.  The character of this momentum source, however, is subtle, as we shall see. 

Figure 3 shows the smoothed time evolution of constituent pieces of the total 

momentum flux <nvxvy> across the LCS obtained by a post-processing procedure that 

retains only pair-wise correlations of fluctuating quantities 

 yxxyyx vvnnvvvnv +≈  (10) 

where periodicity insures that <vx> = 0.  The first term on the rhs of Eq. (10) is the 

passive convection of velocity by the particle flux, the second term is the Reynolds stress 

term which is responsible for converting turbulent fluctuations into zonal flows, i.e. <vy> 
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generation.  The near perfect agreement of the lhs and rhs terms in Eq. (10) indicated in 

Fig. 3 shows that the separation of the triple product <nvxvy> by pair-wise correlations is 

quite accurate here. (In any case, this approximation is done for post-processing, and not 

in the dynamical evolution.) The Reynolds term generates momentum which is partially 

but not totally offset by momentum loss due to the passive term.  Clearly the dynamics 

are not well represented by discarding the passive term.  This is in contrast to core 

turbulence models where n = const is a reasonable approximation (local flux tube model) 

and ∂<vy>/∂t ~ −∂x<vxvy> is adequate.  Here, for the edge problem, if momentum 

transport into the core is arrested by some external means, then the passive and Reynolds 

terms can be in quasi-balance. 

To understand further the nature of the edge momentum source, in Fig. 4 we 

compare the base case with two other cases that have different viscosity coefficients: µ = 

0.1, 0.01 (base) and 0.001 [see also Eq. (7)].  For the µ = 0.1 case, the viscous diffusion 

of momentum inward towards the x = 0 wall proceeds quickly, and an accurate 

accounting of the momentum balance requires retaining the momentum flux into the 

computation boundary at x = 0.  In a full torus simulation this momentum would be 

transported to the core, hence we define 

 
0x

y
core,y v

xt
p

=∂
∂

µ≡
∂

∂
 (11) 

and 
 core,yytot ppp +≡  (12) 

Figure 4 shows that, on the long time scale, totp&  increases with µ . This can be 

understood as follows: Although the µ  term causes momentum to diffuse from the edge 

turbulence zone in both directions, on the core-side where the plasma becomes quiescent 

in our model, µ  provides the only source of momentum transport. Thus, varying µ  is an 

effective means of controlling the transport of zonally-averaged momentum <nvy> from 
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the edge towards the core.  In reality, this transport would be carried out by neoclassical 

or turbulent diffusion and pinch processes not in our model, but under investigation by 

other researchers.10,18-20 The present paper is concerned entirely with the edge 

momentum source, and not with a description of the subsequent transport of this 

momentum inward. 

Figure 4 suggests that the edge source supplies net momentum at the rate at which 

it transports into the core.  Faster inward momentum transport requires a greater edge 

momentum source.  As we shall see, this occurs in order to maintain the required sheared 

velocity profile at the edge.  Thus the net rotation rate of the tokamak is not determined 

by edge physics alone, but depends on the coupling to turbulent momentum transport into 

the core.   

Interestingly, for short times in Fig. 4 (t < 5000), the rate of momentum buildup is 

the same for all µ .  During this phase of the evolution, the rate of momentum increase is 

governed by the need to establish a sheared velocity profile in the instability zone 

(approximately 95 < x < 125 as determined from turbulent profiles and the radial 

eigenmodes discussed in Appendix B) that can regulate the turbulence. During this phase, 

the Reynolds term dominates the passive loss term (the latter being zero at the start of the 

simulation).  Once the required edge velocity profile is established, the “excess” 

momentum generation is available for inward transport.  

The final state (t = 20,000) zonally-averaged velocity profiles <vy(x)> for the 

three cases are shown in Fig. 5.  In fact these profiles are nearly but not strictly time 

independent at the edge (x > 95) and slowly evolve (increasing due to inward diffusion of 

momentum) in the core region x < 95.  For small µ , the edge (x > 95) velocity shear is 

independent of µ  (as expected since the instability growth rates γ are independent of µ  

and shear suppression of the turbulence requires d<vy>/dx ~ γ).  For the largest µ  case, 

strong inward diffusion of momentum suppresses the edge velocity shear.  From these 
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results we see that the strength of the edge momentum “source” is governed by velocity 

shear and shear regulation of the turbulence, so long as the source is strong enough to 

keep up with inward transport. 

In order to understand the role of momentum dissipation in the SOL, we turn to 

two additional cases, illustrated in Fig. 6, in which all parameters are held fixed at their 

base values except the fluctuating vorticity diffusion (i.e. viscosity) µ in Eq. (2) and the 

location of the sheaths.  First, increasing µ reduces the net edge momentum source 

because the instability growth rates, and the resulting nonlinear processes, are all slowed 

down.  For this large µ case, we also move the sheaths far away from the edge gradient 

region.  The inflection point of αsh at x = 118 illustrated in Fig. 1 is moved out to x = 

188.  This eliminates the dissipation of momentum in the near SOL due to the sheaths, 

and allows the turbulence to transfer energy to (bipolar) flows.  As a result the net 

momentum of the plasma is further decreased, as illustrated in the figure.  In the limit 

where there is no loss to the sheaths (or walls), total momentum is conserved and would 

remain at its initial value of zero for all times. In contrast, for the base case, most of the 

momentum transferred from the core is absorbed into the sheaths resulting in 

unidirectional flows (i.e. net rotation) throughout the plasma.   

The spatial variation of the resulting sheared flow for these cases is illustrated in 

Fig. 7.  Note again the approximate invariance of the sheared flow d<vy>/dx in the 

instability zone (95 < x < 125) for the two µ = 0.1 cases, but the significant differences 

elsewhere, in particular the contrast of unidirectional and bipolar flows.  A smaller µ 

comparison of the base case sheath position with a far-away sheath (not shown) is much 

less dramatic, indicating the role of dissipation in converting the fluctuations into zonal 

flows, e.g. dissipation can effect the phases and spectral asymmetry that determine the 

net Reynolds stress <vxvy>. 
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Like previous work with related models,5,7 our simulations indicate that coherent 

structures (blobs) form from the saturation of turbulence, and that the sheared flow plays 

an important role in the blob birth process, detaching the blob from the main plasma.5  

The formation of blobs is best illustrated in the large µ case with sheaths moved far out.  

Large µ dissipates small scale fluctuations, and thus tends to make larger more cohesive 

structures. Reducing the sheath term in the near SOL allows for a longer radial 

propagation zone before the blobs density is lost (by parallel flow) and therefore eases 

diagnostics and visibility.   

In Fig. 8 we show two density snapshots for this case. Overlayed arrows indicate 

the magnitude and direction of the local turbulent momentum nv.  The first snapshot is 

taken near the start of the simulation (t = 3000), and shows the nonlinear development of 

a seeded m = 4 (ky = 0.125) mode.  Evident is the downward ejection of blobs (here more 

like streamers, because sheared flow has not yet developed).  This blob ejection give rises 

to an upward directed “kick” on the core plasma. (Similar results are evident in the time 

history panel shown in Fig. 2)  The direction of blob ejection is opposite to the phase 

velocity of the modes, which is positive: ω/ky ~ ω∗e/ky ~ −(d/dx) ln n. Evidently the blob 

(streamers) which are initially born from wave crests traveling upwards, are swung 

around and down as they are ejected.  As the plasma continues to spin up strong sheared 

flows develop which partially pinch off the streamers to form more isotropic mushroom-

like blob structures.  The blob ejection process also becomes more intermittent.  An 

example of such an ejection event at t = 20,000 is illustrated.  In this quasi-steady 

turbulent state, the impact on the global momentum of an individual blob ejection event 

is not evident in the simulation diagnostics, however, when the plasma is responding to 

sudden changes in the profiles (density gradient or sheared flow) such as occur in the 

transient phase at the start of the simulation, the momentum carried by the blobs is 

evident.  Momentum flow across the LCS also takes place continuously (i.e. between 
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blob emission events) by turbulence-induced diffusion, and this would appear to 

dominate the steady-state global momentum evolution.  Such an interpretation is 

consistent with the observation, made in conjunction with Fig. 3, that quasilinear theory 

(i.e. the neglect of strong turbulence triple correlations in the momentum flux) adequately 

describes steady-state momentum flows across the LCS.  We will return momentarily to 

the specific role of intermittency on momentum vs. particle transport. 

In Figs. 9 and 10 we examine some additional features of the µ = 0.1 simulation 

with the sheaths in the base case position.  Figure 9 shows the wave-number spectrum of 

Φ fluctuations, viz. |Φk|2, in (kx, ky) space. The tilted ellipse is indicative of the spectral 

asymmetries that are required for a finite Reynolds stress <vxvy>, proportional to the 

weighted average Σ kxky|Φk|2.   

In Fig. 10 we explore the radial variation of the fluxes and the turbulence 

statistics in the steady-state.  The particle and momentum fluxes peak in the instability 

zone as expected, decaying into the core at left, and into the SOL at right (due to the 

sheath dissipation).  The particle flux extends somewhat more deeply into the SOL than 

the momentum flux.  The momentum flux is mostly confined to the instability zone itself.  

The gradient of the momentum flux provides the force on the core plasma, and is 

confined to the region x < 110.  The skewness profile (i.e. the normalized third moment 

of the fluctuation probability distribution function, shown here for density fluctuations), 

provides a diagnostic of the birth zone for blobs (and holes),16 viz. the radius at which S 

= 0.  Blobs are distinguishable as isolated coherent structures when S > 1.  Comparing 

the profiles, we see that most of the momentum transfer to the core takes place in the 

radial zone where the blobs are just beginning to be formed, i.e. |S| < 1 pertains in the 

region where the momentum flux is significant.  Finally, in the figure S < 0 corresponds 

to hole generation (i.e. the removal of plasma from the region where the blob formed and 

convected out), however in this region the fluctuations rapidly become exponentially 
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small in our model, making the S diagnostic uninteresting for x < 95. We note that the 

radial propagation of structures in drift-interchange turbulence has been studied 

experimentally, where features such as the skewness profile, intermittent convective 

transport, and blob birth near the density gradient region are routinely seen. 21-26 

Another assessment of the statistics of turbulent momentum transport is shown in 

Fig. 11. The relief plot in a) shows the time-history of particle and momentum fluxes at 

the LCS in the (y, t) plane for the base case.  Note that the particles transport by larger 

more coherent structures than the momentum. The mean upward zonal flow is evident 

from the diagonal form of the structure, but in the case of momentum, the transported 

momentum flux is dominantly negative (blue in the color-online version).  Probability 

distribution functions (PDFs) of the same particle and momentum fluxes are shown in 

Fig. 11 b).  The vertical axis is the normalized probability density, and the horizontal axis 

is the flux normalized to its standard deviation.  Figure 11 shows that the particle flux 

arises from intermittent events which contribute to skewness (i.e. blobs).  In contrast, 

momentum flux arises from smaller scale events that are both positive and negative and 

give rise to kurtosis, obtained from the fourth moment of the PDF (but not skewness, 

obtained from the third moment). 

Many simulations, most run with lower resolution, provide additional insight into 

the properties of the model.  In order to establish the uniqueness of the final state, and its 

possible dependence on initial conditions, we initialized simulations using the base case 

parameters but with an initial flow velocity, <vy> approximating either double the flow 

velocity in the final state of the base case run, or with reversed flow compared to the base 

case final state.  In each case the zonally-averaged flow <vy>  relaxed to a profile similar 

to that of the base case shown in Fig. 5, indicating that the final state is independent of 

initial conditions, at least for these tests.  In particular, we could not find multiple 

attractor states in this model. 



 16 

 Simulations were also performed to assess the role of drift-wave drive, αdw, vs. 

curvature drive, β.  In the absence of the drift wave electron response term, i.e. with αdw 

= 0, the model gives no preferred y-direction for the mode phase velocity: only the 

sheath-modified curvature-interchange branch remains.  In this case, similar sized flows 

develop (relative to the base case) but their direction is not fixed, and depends on initial 

conditions.  It should also be noted that the final nonlinear state with αdw = 0 is quite 

different from the other cases discussed in this paper: all of the flow energy (inverse) 

cascades to the smallest ky in the box, and is also not localized radially near the initial 

instability zone, but penetrates to the x = 0 simulation wall.  

Returning αdw to its base case value, but instead setting β = 0, allows a test of the 

importance of curvature drive on momentum transport.  In this case the instabilities are 

weaker and the buildup of py is correspondingly slower.  There is no persistent 

mechanism for blob convection into the SOL and structure formation is less evident. 

Blobs (i.e. structures with dipole potential and vorticity) can still form from random drift-

wave turbulence interactions (oppositely rotating vortex pairing), and such structures will 

E×B drift into the SOL, however not as rapidly nor as far as when curvature drive is 

present, because there is no curvature drift to sustain the charge separation. However, 

there is still turbulent transport of particles and momentum across the separatrix. 

We also employed a radial eigenvalue code (see Appendix B) based on the 

linearized version of Eqs. (1), and (2), to explore the linear growth rate γ, eigenfunction 

characteristics, and the quasilinear flux of particles and momentum.  This code can also 

take as input an equilibrium velocity shear profile <vy(x)>.  Not surprisingly, we find an 

order unity reduction of the growth rate when d<vy>/dx  ~ γ near the center of the radial 

eigenmode,  and this situation occurs for the shearing rates seen in the simulation (see 

e.g. Fig. 5).  We can also verify the direction of the Reynolds stress term computed in the 

nonlinear SOLT code.  We find that for positive ky, ω and kx of the fastest growing mode 
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are positive, resulting in positive phase velocity of the mode,  radially outward mode 

propagation, and negative <vxvy> = −kxky|Φ|2/2, as observed with SOLT.  Furthermore, 

the signs of ω and kx reverse with ky as can be deduced from symmetry considerations of 

the model equations. 

Two solutions of the radial eigenvalue problem that demonstrate the effect of 

shear flow on momentum transport are illustrated in Fig. 12:  a) the base case at t = 0 

with <vy(x)> = 0, and b) the same case with <vy(x)>  taken as a sech2 function which is 

chosen to be of the same approximate shape and order of magnitude as the result shown 

in Fig. 5 at the end of the run.  The Reynolds stress contribution to the momentum flux 

across the LCS is always negative, but for the large <vy> case, it is dominated by the 

passive momentum flux ∝ <nvx><vy>.  Thus, for an intermediate value of  <vy>, 

cancellation of the Reynolds and passive flux occurs. This near cancellation is what is 

observed in the nonlinear simulations. 

The momentum fluxes in Fig. 12 are normalized to the maximum value of the 

particle flux for each run.  The ratio of momentum to particle flux (which defines a 

characteristic vy) predicted by quasilinear theory is of order 0.1, comparable to that 

shown in Fig. 2 for the full nonlinear simulations. The insets show the real and imaginary 

parts of the eigenfunction.  From the radial variation of the phase of Φ~ , one can deduce 

Re kx > 0 in both cases, confirming the sign of the Reynolds stress term seen here and in 

the SOLT code results.  Thus quasilinear theory both elucidates and describes 

quantitatively (though approximately) the transport of momentum in this problem during 

the quasi-steady turbulent phase, in spite of the fact that turbulence with 1~n/n~  occurs 

as plasma enters the SOL. 
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IV. Discussion and Conclusions 

This paper has discussed the turbulent transport of perpendicular momentum 

including the effect of a momentum sink (sheath BC) in the SOL, allowing a net core 

plasma spin-up to occur.  The role of blobs in momentum transport and the applicability 

of the quasilinear approximation were also addressed. The 2D simulations reported here 

include the effects of drift-wave physics, toroidal curvature, sheath dissipation in the 

SOL, and a conservative equation for the zonally-averaged perpendicular momentum  (no 

Boussinesque approximation). The main findings of this study may be summarized as 

follows: 

(i) Edge turbulence which spans the separatrix, provides an edge momentum 

source which can rotate the core plasma.  Net flow (as opposed to the 

generation of bipolar flows) is a consequence of momentum loss in the SOL 

through sheath dissipation. 

(ii) The Reynolds stress contribution to the momentum flux provides a net force 

on the core plasma, and is opposed by the passive loss of momentum carried 

by exiting particles.  In the quasi-steady turbulent state these two 

contributions nearly cancel, but the Reynolds stress contribution is slightly 

larger in all the situations studied, resulting in a net rotational drive. 

(iii) The momentum source provided by the edge is coupled to core physics which 

dictates how rapidly momentum <nvy> is transported inwards, away from the 

edge region. 

(iv) The system is regulated by the strength of the sheared flows in the edge 

region, viz. <vy(x)> without the density weighting <n(x)>, i.e. the system tries 

to establish a critical value of d<vy>/dx ~ γ.  Thus, taking (iii) into account, 



 19 

there is competition between the momentum and velocity profile evolution 

which depends on the steeply varying edge density. 

(v) Transport of perpendicular momentum in the drift-wave model system is 

dominated by turbulent fluxes in a radial zone inside the LCS where blob 

formation is not yet complete.  In the turbulent steady-state, the occurrence of 

strong turbulence and intermittent coherent structures is of secondary interest 

for momentum transport across the separatrix.  Quasilinear theory provides a 

reasonable explanation of the ratio of momentum to particle fluxes, including 

the sign.  The role of coherent structures (blobs) on momentum transport is 

noticeable during transients, such as relaxation from a strongly unstable initial 

condition, when blob emission is strong. 

(vi) Poloidal spin-up of the core is in the same direction as the phase velocity of 

the drift waves, for all cases that were explored.  This direction corresponds to 

outward propagation of the radial eigenmode.  

 

Point (vi) may be also depend on physics which is not described by the present 

model, such as the role of sheath potentials and temperature gradients in the SOL, and the 

resulting induced SOL flows.  

Concerning point (v) on the role of blobs on edge momentum transport and 

induced zonally-averaged perpendicular flows, we have seen that specific blob effects 

can be present when the plasma responds to sudden transient changes.  In the simulation, 

this occurs at t = 0; however, in experiments transients and blob ejection may be 

triggered by avalanche-type phenomena which have their origin in the core and propagate 

profile effects (density or zonal flow) out to the edge.  In general, blob dynamics in the 

SOL itself is less interesting for perpendicular momentum transport than for particles and 

energy, simply because in the latter case the radial deposition profile of plasma particles 
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and energy in the SOL is of practical importance for determining recycling and wall 

damage. In contrast, the radial momentum deposition profile in the SOL is of little 

interest, and only the net transport from the core across the separatrix is important. 

The direction of the rotation (i.e. flow) in our model, point (vi), deserves some 

comment.  As noted, the direction can be understood from simple considerations of 

Reynolds stress and the direction of radial wave propagation.  Of course, the direction in 

which the plasma core rotates must oppose the direction of momentum which is 

transported across the LCS and lost in the sheaths.  In the blob interpretation, this means 

that blobs cross the LCS moving in the negative y-direction (e.g. see Fig. 8, in which the 

blobs move down), which is the direction opposite to the phase velocity of the modes, 

since ω/ky ~ ω∗e/ky ~ −(d/dx) ln n is positive.  We can imagine the formation of blobs 

from the saturation by wave-breaking of a large-amplitude unstable drift-interchange 

mode.  In the frame of the phase velocity of this mode, it is tempting to further imagine 

that the wave crests form blobs which propagate radially outward by the usual blob 

convection mechanism, while the wave troughs form holes that propagate inwards.  

However, the blobs are not ejected with a velocity equal to the phase velocity of the 

modes.  Instead, from Fig. 8, we see that while the wave crests move up, the blobs arising 

from these crests are spun around and down in the ejection process, consistent with the 

direction of the outer lobe of the sheared flow pattern.  Thus, the E×B turbulent dynamics 

of blob formation is rather complicated and non-intuitive. For example, whereas the 

poloidal phase velocity of modes is influenced by ω∗e = ky v∗e, the fluid drift v∗e does 

not directly transport mass (blobs).  Also, the core rotation is generated by the Reynolds 

stress, not the passive term, but it is the passive term which has a relatively direct 

interpretation in terms of momentum carried on the “back” of a density blob.   

The studies described in this paper pertain to transport in the radial direction of 

the perpendicular (to B) component of momentum, viz. the momentum flux <nvxvy> 
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where y is the binormal direction (i.e. the b × ∇ψ direction, where ψ is the flux function).  

While the resulting vy flows do have a small projection onto the toroidal direction, 

typically toroidal flows are also (if not dominantly) influenced by the radial flux of 

parallel momentum <nvxv||>.  In particular, in flux coordinates (ψ, θ, ζ), the turbulent 

radial flux of toroidal momentum contains the Reynolds stress term 

||xyxx v~v~bv~v~bv~v~ ζθζ +−= .  In this case, the v|| response of the plasma makes the 

k|| spectrum of waves a critical ingredient, requiring a three-dimensional treatment.  As 

noted in Ref. 27  the fluctuating parallel momentum equation yields a term for ||v~   which 

is proportional to the parallel pressure force n/n~k|| .  This results in  a parallel 

momentum flux <nvxv||> term of the form x||
2
s v~n~)/k(c ω .  This term gives a 

momentum “pinch”, and represents the parallel wave momentum carried by particles 

(e.g. blobs).  In this case the direction of (e.g. blob-) transported momentum has the same 

sign as the phase velocity of the modes. The theoretical implications of this, together with 

experimental evidence, have been discussed by Coppi.12  Unlike the passive momentum 

flux term for perpendicular transport [i.e. the first term on the rhs of Eq. (10)] which 

always dissipates the existing flow towards zero,  [since <nvx> is positive, ∂t 
py ~ 

−sign(vy)] the parallel pinch term can generate spontaneous flow. Thus there are 

important differences between perpendicular and parallel momentum transport which 

need to be considered, and are outside the scope of this study.  Furthermore, for the study 

of toroidal rotation, the coupling of toroidal and poloidal flows needs to be taken into 

account. Such studies, will provide interesting directions for future work. 
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Appendix A: Model equations and numerical algorithm 

This Appendix develops model equations for drift wave (DW) and curvature-

driven turbulence in 2D.  A two field model similar to the Wakatani-Hasegawa and blob 

models is proposed which embodies the essential features of electrostatic drift wave 

instability and curvature-driven blob transport in a layer near the last closed surface 

(LCS).  We highlight some subtleties associated with the precise form of the continuity 

and vorticity equations, and their relation to the momentum equation.  To insure a 

momentum conserving model, the zonally-averaged momentum equation is first obtained 

exactly from first principles. Then fluctuations from our model equations are employed to 

get the force on the plasma, and to determine the evolution of the zonally averaged 

profiles. 

Derivation of model equations 

The fundamental forms of the continuity, vorticity and momentum equations are 

(in dimensional cgs units) 

 S)n(
t
n

=⋅∇+
∂
∂ v  (A1) 

 ||||J∇=⋅∇− ⊥J  (A2) 
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and Ohm’s law is 
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e
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Here n is the density, J is the current density, p = nT is the pressure, S is a particle 

source, v0 is the velocity at which source particles are injected, Φ is the electrostatic 

potential and η|| is the Spitzer resistivity.  In this appendix (as distinct from the main 

text), v is the total velocity including the parallel component. 

The velocity in the electron continuity equation, Eq. (A1), may be split up into 

E×B and parallel pieces, yielding 

 SJ
e
1

dt
dn

e|||| +∇=  (A5) 

where ∇⋅+∂∂= Et/dt/d v  and Φ∇×= bv )B/c(E .  On closed surfaces, we follow the 

Wakatani-Hasegawa philosophy, and employ Ohm’s law with 2
||

2
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2
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where N = ln n.  Only the fluctuating parts of Φ and N are retained on the right of Eq. 

(A6) in order to preserve the important property that the flux-surface average of ||||J∇  

vanish in the model equations.  Here we employ the super ~ to denote the y-variations, 

e.g. NNN~ −=  where <..> represent a flux-surface (i.e. y) average. 

On the open field lines, the equations are averaged along a field line of length L||, 

and J|| is evaluated at the sheath.  This results in the usual sheath end-loss terms for 

particles and charge in the continuity and vorticity equations, viz. 
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where the zero of potential is at 3T above the wall. 
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The vorticity equation is employed to advance the fluctuating portion of the 

potential, Φ−Φ=Φ~  where Φ≡Φ .  Here we make the usual Boussinesque 

approximation in Eq. (A2), 

 Φ∇≈⋅∇− ⊥⊥
2

2

2
i

dt
d

B

cnm
J  (A9) 

Combining Eqs. (A2), (A5), and (A6) - (A9) and changing to dimensionless 

variables results in Eqs. (1) and (2) of the main text.  Here, αdw and αsh are non-zero in 

the closed and open field line regions respectively. We also add additional small ad-hoc 

diffusion terms to the evolution equations for density and vorticity, with diffusion and 

viscosity coefficients D and µ respectively. 

To insure global momentum conservation in the symmetry (y) direction, Φ  is 

advanced directly from the momentum conservation equation, rather than from an 

approximated form of the vorticity equation.  To this end, the y-average of the y-

component of Eq. (A3) yields 

 ( ) SvJ
cm

Bvnv
x

nv
t y0x

i
yxy +−=

∂
∂

+
∂
∂  (A10) 

where periodicity has been used to annihilate y/p ∂∂ .  From charge conservation, Eq. 

(A2), ||||
x

0x JxdJ ∇′−= ∫ , hence 0J x = on closed surfaces; on open field lines, xJ  

in obtained from Eq. (A8).  In this paper we consider that the particle source S injects 

particles at zero velocity, vy0 = 0.  The dimensionless form of Eq. (A10) yields Eq. (7) of 

the main text, where again we add an additional small ad-hoc diffusion term, with 

viscosity coefficient µ .   

 

Numerical advancement algorithm 

The equations of continuity and fluctuating vorticity, Eqs. (1) and (2) of the main 

text, are time-advanced using a split-step algorithm. Convection of all fields is by the bi-
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directional, “phoenical SHASTA” algorithm with a two dimensional flux limiter.  The 

diffusion equation for each field, is solved by the bi-directional, implicit Crank-

Nicholson algorithm, and Poisson’s equation is solved by Fourier analysis with cyclic 

reduction. Details and references are given in Appendix A of Ref. 16.   

For the advancement of the zonally averaged potential <Φ> from Eq. (6), we 

perform an explicit update of <nvy> and extract the updated value of <Φ> using 

yyy v~n~vnnv +=  and <vy> = ∂<Φ>/∂x.  Updated values of  <n>, and yv~n~  are 

employed from the advancement of the continuity and fluctuating vorticity equations, 

which precede this step in the split-step scheme.  Spatial integration in x is required to 

obtain <Φ> from <vy>.  The integral is taken from the right hand boundary x = Lx to the 

interior points, with the boundary condition <Φ>(x = Lx) = 0. 

Appendix B: Radial eigenvalue code and SOLT code verification 

To gain further insight into the linear and quasilinear properties of the turbulence, 

and for purposes of verifying the SOLT nonlinear turbulence code, a radial eigenvalue 

code has been constructed.  The linearized equations of our model define the following 

eigenvalue problem for the fluctuating fields Φ~  and 0n/n~N~ = ) 

 Φ+=ω ~bN~aN~  (B1) 

 Φ+=Φω ~dN~c~k2  (B2) 

where the (radially, i.e. x-dependent) coefficients are defined by 
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with the operator 
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and the characteristic frequencies 
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In local theory, ∂/∂x → −ikx one obtains the dispersion relation 

 bc)dk)(a( 2 =−ω−ω  (B11) 

from which the basic curvature, sheath-interchange, and drift-wave instabilities may be 

extracted.  Here we consider the non-local radial eigenvalue problem in order to 

quantitatively treat the sharp density gradients and longer wavelength modes for with 

kxLn ~ 1. 

For typical parameters, the unstable spectrum γ(ky) takes the form shown in Fig. 

13, with a maximum growth rate at intermediate ky ~ 0.2 – 0.5.  The lower ky unstable 

spectrum shows the greatest drift-wave character, while for high ky, the character is more 

that of the curvature-interchange mode.  In Fig. 13 we display a benchmark comparison 

of the growth rates measured with the SOLT turbulence code against the result of the 

radial eigenvalue code.  Parameters are base case, except as indicated.  Note that the 

explicit diffusion coefficients D and µ are turned off.  Two cases are shown  which serve 

to verify the classes of terms associated with αdw and αsh separately.  The agreement is 

excellent at low ky where grid diffusion effects are small.  The grid size for these runs is 

coarser than those of the main paper to illustrate grid diffusion: the grid size is  ∆x = ∆y = 

1.57 ρs. Grid diffusion is negligible until ky ρs > 0.6 which corresponds to ky ∆y > 1.  
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These results are very sensitive to the non-stationary “equilibrium” for finite αdw (which 

requires turning sheaths and diffusion off for benchmarking studies). For these tests, 

there were no equilibrium flows, and in particular there is no validation of the advection 

term Φ∇∇⋅ 2v . 

To test the linearized advection term with equilibrium flows, we employed a 

sech2 vy(x) profile, turned off curvature and drift wave drives, and performed a γ(ky) 

comparison of the resulting Kelvin-Helmholtz instabilities. Results are shown in Fig. 14.  

The eigenfunctions (not shown) peak radially at the maximum shear in vy.  For the 

largest k ~ 0.2, the eigenfunction becomes very sharp and is not well resolved by grid, 

accounting for the slight discrepancy seen in the figure for this case. 

Other verification tests were also performed.  In particular, local and global 

momentum conservation were checked.  It was verified that the total momentum in the 

plasma plus the time-integrated diffusive momentum flux out the left boundary equals the 

total time-integrated momentum lost to sheaths. 
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Figure captions 

1. (Color online) Input radial profiles of  n0 (solid black),  αdw/αdw0 (dotted red), 

αsh/αsh0 (dashed blue) for the base case. 

2. (Color online) a) Time histories of py, <nvx>, and <nvxvy> for the base case.  Fluxes 

are measured at x = 110, the nominal LCS. Unlike the particle flux, the instantaneous 

momentum flux leaving the plasma has both signs, but is dominantly negative, giving 

rise to the positive net plasma momentum building up seen in the top panel.  Note the 

initial transient burst of blobs and the resulting “kick” to the plasma. b) Time 

evolution of the radial profile of  <nvy> showing how the edge provides a “source” 

for inward transport of momentum towards the core.   

3. (Color online) Smoothed time evolution of constituent pieces of the momentum flux 

for the last portion of the run in Fig. 2. Shown are the total <nvxvy> (thick black), the 

Reynolds contribution <n><vxvy> (dotted red) , the passive contribution <nvx><vy> 

(dashed blue). Also shown is the total of passive and Reynolds terms (thin, green) 

whose proximity to the full total indicates the dominance of pair-wise correlations 

(the quasilinear approximation).   The total has the sign of the Reynolds term, but 

there is significant cancellation. 

4. (Color online) Time history of py for three cases with varying diffusion coefficient 

for zonal momentum:  µ  = 0.1 (dashed blue), 0.01 (solid black, base case), and 0.001 

(dotted green).  Faster inward momentum transport requires a greater edge source.  

The runs are similar for early times ( t < 5000) while the edge velocity shear profile is 

building up to a quasi-stationary value. 

5. (Color online) Radial profile of zonally-averaged flow <vy> for the same three cases 

as in Fig. 4 at the end of the run.  (coding of the curves is the same).  The velocity 

shear d<vy>/dx in the instability zone (95 < x < 125) is similar for the µ  =  0.01 and 
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0.001 cases. For very large inward transport of momentum µ  = 0.1, the edge source is 

not strong enough to maintain the steep velocity shear. 

6. (Color online) Time history of py for three cases with different dissipation levels of 

the fluctuating vorticity and different sheath locations: µ = 0.01 (solid black, base 

case), µ = 0.1 (dashed blue), and µ = 0.1 with sheaths moved out (dotted green). In 

the latter case, the inflection point of αsh (see Fig. 1) is moved from x = 118 (its base 

case value) to x = 188.  In this sequence of runs, the turbulence increasingly 

dissipates in (bipolar) flows rather than transferring momentum to the sheaths.  

Hence, there is a reduced net momentum “kick” on the plasma.  

7. (Color online) Radial profile of zonally-averaged flow <vy> for the same three cases 

as in Fig. 6 at the end of the run.  (coding of the curves is the same).  Note the bipolar 

flows in the case of µ = 0.1 with sheaths moved out.  The velocity shear d<vy>/dx in 

the instability zone (95 < x < 125) is similar for all three cases (slightly weaker in the 

µ = 0.1 cases, reflecting reduced linear growth rates). 

8. (Color online) Plasma density snapshots in the (x, y) plane for the µ = 0.1 case with 

sheaths moved out.  Color online version shows logarithmic density shading  with red 

high, and blue/white  low.  Arrows indicate the magnitude and direction of the local 

turbulent momentum nv.  a) Early nonlinear development of a seeded m = 4 (ky = 

0.125) mode showing the downward ejection of blobs (here more like streamers) 

which give rise to an upward directed kick on the core plasma. b) Later snapshot 

showing that as the core plasma accelerates, strong sheared flows develop which 

pinch off the streamers to form more mushroom-like “blob” structures which are 

emitted intermittently. 

9. (Color online) Spectral energy of potential fluctuations |Φ(kx,ky)|2 for the µ = 0.1 

case of the previous figures, but run longer and averaged over t = 20,000 to 60,000.  

The plot shows the spectral asymmetry (tilted ellipse) necessary to get a non-zero 

Reynolds stress <vxvy> ∝ −kxky <|Φ|2>.  
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10. (Color online) Radial profiles of  density <n>, particle flux <nvx>, momentum flux 

<nvxvy> and skewness of density fluctuations S, for the µ = 0.1 case. Results for the 

fluxes are averaged over a run of duration t = 60,000.  S ≈ 0 defines the blob 

generation zone. Note that |S| < 1 applies throughout the region of strong momentum 

transfer, proportional to the gradient of  momentum flux. 

11. (Color online) a) Relief plot showing the time-history of particle and momentum 

fluxes at the LCS in the (y, t) plane for the base case.  Color online version shows 

positive values in red, negative in blue.  Note that the particles transport by larger 

more coherent structures than the momentum. The mean upward flow is evident.  b) 

Normalized probability distribution functions (PDFs) of the same particle (dashed) 

and momentum (solid) fluxes. 

12. (Color online) Quasilinear results from the radial eigenvalue code illustrating the 

effect of the zonally-averaged velocity profile on the momentum flux.  Shown are the 

total and constituent pieces of the momentum flux: total <nvxvy> (thick black), the 

Reynolds contribution <n><vxvy> (dotted red) , the passive contribution <nvx><vy> 

(dashed blue). a) <vy> = 0, b) <vy> profile similar to the base case in Figs. 5 or 7.  

Note the dominance of the passive contribution at large <vy> and the corresponding 

reversal of the net momentum flux.  Insets show the real (solid) and imaginary 

(dashed) parts of the linear eigenfunction on the same radial scale as the main figure, 

from which Re kx > 0 can be deduced. 

13. (Color online) Benchmarking of the SOLT turbulence code against the radial 

eigenvalue code for drift-wave and curvature instabilities.  Shown are linear growth 

rates vs. wavenumber with SOLT results as points with error bars, and eigenvalue 

code results as continuous lines.  Base case parameters are employed with <vy> = 0 

except that D = µ = 0 and for the two cases αdw = 0 (squares), αsh = 0 (triangles). 

14. (Color online) Benchmarking of the SOLT turbulence code against the radial 

eigenvalue code for Kelvin-Helmholtz instability.  Shown are linear growth rates vs. 
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wavenumber with SOLT results as points with error bars, and eigenvalue code results 

as continuous lines.  Parameters are D = µ = αdw =  αsh = β = 0 and <vy> was given a 

radial sech2 profile similar in width and shape to the base case profile shown in Figs. 

5 and 7 but approximately 5 times larger in amplitude to enhance the growth rates. 
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